


2018/2019

# Ionic Compounds and Metals

تُستخدم أوبراق العمل للمساعدة على أداء الأنشطة داخل الصف، ولا تُغني عن الكتاب المدرسي



Valence Electrons and Chemical Bonds






Atoms can join together by forming a chemical bond, which is a very strong attraction between two atoms. Chemical bonds are formed when electrons in different atoms interact with each other to make an arrangement that is more stable than when the atoms are apart.

What causes atoms to make a chemical bond with other atoms, rather than remaining as individual atoms?

Chemists have concluded that atoms be stable if they have eight electrons in their outermost shell. This useful rule of thumb is called the octet rule, and it is a key to understanding why compounds form.



There are two ways for an atom that does not have an octet of valence electrons to obtain an octet in its outer shell.

- 1) One way is the transfer of electrons between two atoms until all atoms have octets.
- 2) The second way for an atom to obtain an octet of electrons is by sharing electrons with another atom.

#### Valence Electrons

Recall that the valence electrons of an atom are the electrons located in the highest occupied principal energy level. Valence electrons are primarily responsible for the chemical properties of elements. The number of valence electrons can be easily determined from the electron configuration.

**Electron dot diagrams** are diagrams in which the valence electrons of an atom are shown as dots distributed around the element's symbol.

|        |   | 1A(1)           | 2A(2)           |
|--------|---|-----------------|-----------------|
|        |   | ns <sup>1</sup> | ns <sup>2</sup> |
| ро     | 2 | • Li            | •Be•            |
| Period | 3 | • Na            | •Mg•            |

| 3A(13)                          | 4A(14)                          | 5A(15)                          | 6A(16)                          | 7A(17)                          | 8A(18)                          |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| ns <sup>2</sup> np <sup>1</sup> | ns <sup>2</sup> np <sup>2</sup> | ns <sup>2</sup> np <sup>3</sup> | ns <sup>2</sup> np <sup>4</sup> | ns <sup>2</sup> np <sup>5</sup> | ns <sup>2</sup> np <sup>6</sup> |
| • B •                           | · ċ ·                           | • N •                           | : 0 •                           | : F:                            | :Ne:                            |
| • AI •                          | ·si·                            | • P •                           | : s ·                           | : CI :                          | : Ar :                          |

- 1) Describe two different causes of force of attraction in a chemical bond.
- 2) Compare between group 18 and group 17 elements according to reactivity.

## Valence Electrons



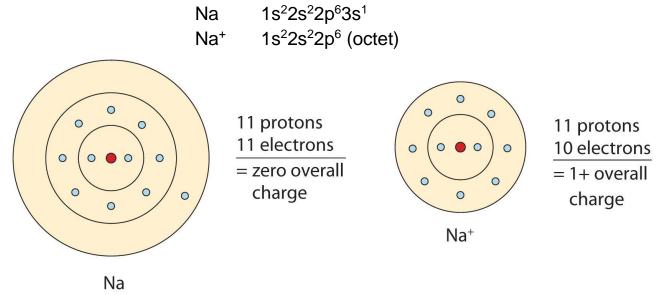






| 3)         |                                                                                                                                                                  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4)         | The valence electrons largely determine theof an                                                                                                                 |
|            | element and are usually the only electrons used in                                                                                                               |
| 5)         | Is the following sentence true or false? The group number of a representative element in the periodic table is related to the number of valence electrons it has |
| 6)         | What is an electron dot structure?                                                                                                                               |
| <b>7</b> ) | What is the octet rule?                                                                                                                                          |
| 8)         | Metallic atoms tend tovalence electrons to produce positively charged ion. Most nonmetallic atoms achieve a complete octet b gaining or electrons.               |
| 9)         | Draw the electron dot structure for each of the following atoms.                                                                                                 |
|            | a) Argon                                                                                                                                                         |
|            | b) Calcium                                                                                                                                                       |
|            | c) Iodine                                                                                                                                                        |










## Positive lons (Cation) Formation

Cations are the positive ions formed by the loss of one or more electrons. The most commonly formed cations of the representative elements are those that involve the loss of all of the valence electrons. Consider the alkali metal sodium (Na). It has one valence electron in the third principal energy level. Upon losing that electron, the sodium ion now has an octet of electrons from the second principal energy level.



The electron configuration of the sodium ion is now the same as that of the noble gas neon. it is important to understand that although sodium now has the electron configuration of neon it is not neon.







## Metal lons

10) What are the most reactive metals?

\_\_\_\_\_

11) Why do those metals are reactive?

| Group | Configuration | # valence e <sup>-</sup> | # lost e | Ion formed |
|-------|---------------|--------------------------|----------|------------|
| 1     |               |                          |          |            |
| 2     |               |                          |          |            |
| 13    |               |                          |          |            |

#### Transition Metal ions

12) What is the general Electron configuration for transition metals?

13) How many valence Electrons do Transition elements have?

How many Electrons do a Transition element will lose to form an Ion?

Transition elements also lose Electrons from d sublevel and commonly form 3+
ions, and sometimes lose more electrons from d and form ions of 3+ or greater.

# Pseudo-noble gas configuration

Not all stable ions result in the noble gas configuration; there are a few exceptions mainly in the transition metals. Zn 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>3d<sup>10</sup>4s<sup>2</sup> loses the two valence electrons to become Zn<sup>2+</sup> 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>3d<sup>10</sup> that is stable but does not have the configuration of a noble gas. It does have a complete valence shell. Other ions like Cu<sup>+</sup>, Ag<sup>+</sup>, Au<sup>+</sup> and Cd<sup>2+</sup> have pseudo noble gas configurations.









| 14) Write the electron configurations fo | r these metals, | and circle | the electrons | lost |
|------------------------------------------|-----------------|------------|---------------|------|
| when each metal forms a cation.          |                 |            |               |      |

a. Mg \_\_\_\_\_

b. Al \_\_\_\_\_

c. K \_\_\_\_\_

15) Match the noble gas with its electron configuration.

1. Argon

 $1s^2$ 

2. helium

 $1s^22s^22p^6$ 

3. neon

 $1s^22s^22p^63s^23p^6$ 

4. krypton

 $1s^22s^22p^63s^23p^63d^{10}4s^24p^6$ 

16) What is the electron configuration called that has 18 electrons in the outer energy level and all of the orbitals filled?

17) Write the electron configuration for zin

18) Fill in the electron configuration diagram for the copper(I) ion.









# Negative ion (Anions) formation

**Anions** are the negative ions formed from the gain of one or more electrons. When nonmetal atoms gain electrons, they often do so until their outermost principal energy level achieves an octet.

**19**)

| Group | Configuration | # valence e <sup>-</sup> | # gained e <sup>-</sup> | Ion formed |
|-------|---------------|--------------------------|-------------------------|------------|
| 15    |               |                          |                         |            |
| 16    |               |                          |                         |            |
| 17    |               |                          |                         |            |

20) Write the Electron configuration for,

| Neon atom:     |               |
|----------------|---------------|
| Nitrogen atom: | Nitrogen ion: |
| Oxygen atom:   | Oxygen ion:   |
| Fluorine atom: | Fluorine ion: |

| 21) | Compare | between | the electro | configuration | n for ions a | and the for t | the Neon a | atom. |
|-----|---------|---------|-------------|---------------|--------------|---------------|------------|-------|
|     |         |         |             |               |              |               |            |       |
|     |         |         |             |               |              |               |            |       |

22) Under typical conditions, \_\_\_\_\_ electrons are the maximum number, that will be gained in the formation of anions.

The anion name is formed from the name of the element, but "ide" replaces the normal ending in the elements name

23) Name the next ions.

| Atom     | Ion name |
|----------|----------|
| Oxygen   |          |
| Fluorine |          |
| Bromine  |          |

| Atom     | Ion name |
|----------|----------|
| Nitrogen |          |
| Chlorine |          |
| Sulfur   |          |

Some nonmetals can lose or gain electrons as well, like Phosphorus,

| 24) How many | electrons could | pnospnorus <b>gai</b> | n?vvny? |  |
|--------------|-----------------|-----------------------|---------|--|
|              |                 |                       |         |  |

|               | _          |        | _     | _         |        |                 |
|---------------|------------|--------|-------|-----------|--------|-----------------|
| 25) How man   | voloctrone | COLUID | nhacr | Shorus    | laca?  | <b>11/h</b> 1/2 |
| ∠5) NOW IIIaH | A GIGCHOUS | Could  | DHOSE | 21 101 US | 1026 ( | VVIIV (         |
|               |            |        |       |           |        |                 |

| <b>26</b> ) | Atoms of most nonmetallic elements achieve noble-gas | electron configurations |
|-------------|------------------------------------------------------|-------------------------|
|             | by gaining electrons to become                       | or negatively charged   |
|             | ions                                                 |                         |









| 27) What property of nonmetallic elements makes them more likely to gain elect than lose electrons? |                                                                                   |           |  |  |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------|--|--|
| 28) Is the following s<br>lose one electro                                                          | sentence true or false? Elements of the haloge on to become halide ions.          | -         |  |  |
| 29) How many electror<br>a. nitrogen                                                                | ns will each element gain in forming an ion?                                      |           |  |  |
| ь. oxygen                                                                                           |                                                                                   |           |  |  |
| c. sulfur                                                                                           |                                                                                   |           |  |  |
| d. bromine _                                                                                        |                                                                                   |           |  |  |
|                                                                                                     | nd electron configuration for each ion from Questios with the same configuration. | n 19, and |  |  |
| f. oxide                                                                                            |                                                                                   |           |  |  |
| g. sulfide                                                                                          |                                                                                   |           |  |  |
| հ. bromide                                                                                          |                                                                                   |           |  |  |







| Answer                                      |
|---------------------------------------------|
| t type of ion will metals form, positive or |
| Answer                                      |
| Answer                                      |
| Answer                                      |
| a completed outer shell for period 1?       |
| Answer                                      |
| n completed outer shells for all periods    |
| Answer                                      |
| ommon to all elements of the "d" block,     |
| Answer                                      |
| mon to all elements of the "f" block, inner |
| Answer                                      |
| r "f," are considered those involved in the |
| Answer                                      |
| outer shell of eight electrons?             |
| Answer                                      |
| oup 1 elements?                             |
| Answer                                      |
| oup 2 elements?                             |
| Answer                                      |
| "f," are involved in ion formation of group |
| Answer                                      |
| rm either +4 or –4 ions?                    |
| Answer                                      |
| gases, have zero, 0, as the charge that     |
| Answer                                      |
|                                             |









| I. Answer the following                                                                | g by placing the letter o                                                | of the answer that best of | completes the         |  |  |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------|-----------------------|--|--|
| statement or answers                                                                   | the question.                                                            |                            |                       |  |  |
| 46) What is the most I                                                                 | likely combination of ty                                                 | pes of electrons that a    | re involved in        |  |  |
| forming complete of                                                                    | outer shells?                                                            |                            |                       |  |  |
| □ "s" and "p"                                                                          | □ "s" and "d"                                                            | □ "p" and "d"              | $\square$ "p" and "f" |  |  |
| 47) The ion charge tha                                                                 | at is common to all trans                                                | sition elements is         |                       |  |  |
| □ +1                                                                                   | □ <b>+</b> 2                                                             | □ -1                       | □ -2.                 |  |  |
| 48) Metals form which                                                                  | type of ions?                                                            |                            |                       |  |  |
| □ negative                                                                             | □ anions                                                                 | $\square$ cations          | $\square$ neutral.    |  |  |
| 49) What is the most p                                                                 | robable charge of the i                                                  | ons of elements located    | l in group 12?        |  |  |
| □ +1                                                                                   | □ <b>+</b> 2                                                             | □ <b>+</b> 3               | □ <b>+4</b> .         |  |  |
| 50) What is the charge                                                                 | of an atom that has lo                                                   | st four electrons?         |                       |  |  |
| $\square$ positive                                                                     | □ <b>+</b> 4                                                             | □ negative                 | □ -4.                 |  |  |
|                                                                                        |                                                                          |                            |                       |  |  |
| II. Answer the followi                                                                 | ng placing your answ                                                     | ers on the spaces prov     | rided at right:       |  |  |
| 51) What is the charge                                                                 | on an atom that has g                                                    | ained one electron?        | _                     |  |  |
| 52) What is the charge of an atom that has lost three electrons?                       |                                                                          |                            |                       |  |  |
| 53) What is the charge of elements in group 16?                                        |                                                                          |                            |                       |  |  |
| 54) What is the charge of elements in group 1?                                         |                                                                          |                            |                       |  |  |
| 55) What is the most probable charge of an ion of fluorine, #9, group 17?              |                                                                          |                            |                       |  |  |
| 56) What is the most p                                                                 | robable charge of an ic                                                  | on of magnesium, #12, g    | group 2?              |  |  |
| 57) What is the most p                                                                 | 57) What is the most probable charge of an ion of sulfur, #16, group 16? |                            |                       |  |  |
| 58) What are the two o                                                                 | charges possible for ele                                                 | ments in group 5?          |                       |  |  |
| 59) What is the charge common to all inner-transition elements, the "f" block?         |                                                                          |                            |                       |  |  |
| 60) Which electrons, "s," "p," "d," or "f," are involved in the ion formation of Al+3? |                                                                          |                            |                       |  |  |
|                                                                                        |                                                                          |                            |                       |  |  |



9



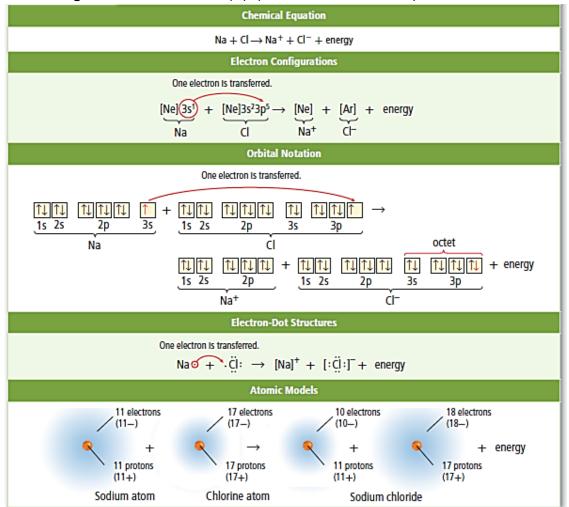


## Formation of an ionic Bond

Oppositely charged particles attract each other. This attractive force is often referred to as an **electrostatic force** 

An **ionic bond** is the electrostatic force that holds ions together in an ionic compound

When the ionic compound formed from Oxygen and a metal it is called OXIDE, most other ionic compounds called salts.


A binary ionic compound is composed of ions of two different elements - one of which is a metal, and the other a nonmetal.

For example, sodium chloride (NaCl) and Magnesium Oxide (MgO)

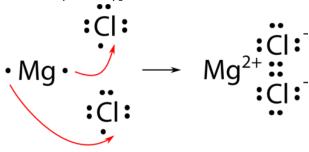
## Compound formation and charge

#### In sodium chloride

- ✓ Sodium is a metal and loses its one valence electron to become a cation.
- ✓ Chlorine is a nonmetal and gains one electron in becoming an anion.
- ✓ Both achieve a noble-gas electron configuration.
- ✓ The ionic bond is the attraction of the Na+ ion for the Cl- ion.
- ✓ Total charge should be zero (0) (+1 ion + -1 ion = 0)

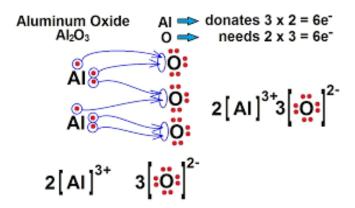












## For magnesium chloride

- ✓ Magnesium has <u>two valence electrons</u>, it needs to lose both to achieve the noble-gas configuration.
- ✓ Chlorine is a nonmetal and gains one electron in becoming an anion.
- ✓ Therefore, two chlorine atoms will be needed
- ✓ Total charge [+2 ion + 2x (-1 ion)] = zero



#### For Aluminum oxide

- ✓ Aluminum has <u>three valence electrons</u>, it needs to lose three electrons to achieve the noble-gas configuration.
- ✓ Oxygen is a nonmetal and gains two electrons in becoming an anion.
- ✓ Therefore, two Aluminum atoms will be needed with three oxygen atoms.
- ✓ Total charge [2x (-3 ion) + 3x (-2 ion)] = zero









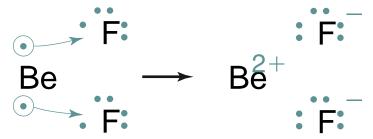


# Explain how an ionic compound forms from these elements.

| <b>61</b> ) | Sodium and Nitrogen                                                                           |
|-------------|-----------------------------------------------------------------------------------------------|
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
| 62)         | Lithium and Oxygen                                                                            |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
| <b>63</b> ) | Aluminum and Sulphur                                                                          |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
| 64)         | Which cation (Na <sup>+</sup> or C2 <sup>+</sup> ) would form a stronger ionic bond with Cl-? |










| 65  | What     | is | an | ionic | bond?  |
|-----|----------|----|----|-------|--------|
| UJ, | , vviiai | ıs | an |       | DUITU: |

| 66) In an ionic compound, the charges of the | and       |
|----------------------------------------------|-----------|
| ·                                            | substance |
| must balance to produce an electrically _    | Substance |

67) Complete the electron dot structures below to show how beryllium fluoride (BeF<sub>2</sub>) is formeUse the diagram on page 203 as a model.



| 68) Why do beryllium and fluorine combine in a 1:2 ratio |
|----------------------------------------------------------|
|----------------------------------------------------------|

| 72) Explain why the ratio of magnesium ions to chloride ions in I                                 | MgCl <sub>2</sub> is 1:2. |
|---------------------------------------------------------------------------------------------------|---------------------------|
| 71) What is a formula unit?                                                                       |                           |
| d. NH <sub>4</sub> NO <sub>3</sub>                                                                |                           |
| c. CH <sub>3</sub>                                                                                |                           |
| ъ. KMnO <sub>4</sub>                                                                              |                           |
| 70) List the numbers and types of atoms represented by these of a. Fe <sub>2</sub> O <sub>3</sub> |                           |
| 69) A chemical formula shows the types and<br>the smallest representative unit of a substance     | or atoms if               |









## Properties of ionic compounds

The physical structure of the ionic compound contributes to its physical properties.

# Physical structure

lonic compounds do not exist as discrete molecules. In order to minimize the potential energy of the system, ionic compounds take on the form of an extended three-dimensional array of alternating cations and anions. This maximizes the attractive forces between the oppositely charges ions, and reduce the repulsion between the identical ions.

Two models of a sodium chloride crystal are shown. The purple spheres represent the Na+ ions, while the green spheres represent the Cl- ions.



Naturally occurring sodium chloride (halite) does not look at first glance like the neat diagrams shown above It is only when we use modern techniques to analyze the crystal structure at the atomic level that we can see the true regularity of the organized ions.

| In sodium chloride crystal every sodium ion is surrounded bychloride ions      |
|--------------------------------------------------------------------------------|
| and each chloride ion is surrounded bysodium ions.                             |
| 74) What is the shape of the small salt crystal?                               |
| 75) What determine the ratio of positive to negative ions in an ionic crystal? |
| 76) Do ionic compounds exist as discrete molecules?                            |







The atoms in a crystal are in a regular repeating pattern called the crystalline lattic. The crystalline lattice can be reproduced by repeating the unit cell in three dimensions.

| 77) Define | crystal lattice | ) |      |  |
|------------|-----------------|---|------|--|
|            |                 |   | <br> |  |
|            |                 |   |      |  |

Scientists use several classification schemes to classify minerals (ionic compounds) such as color, hardness, chemical properties, magnetic and electric properties. Thy also use types of anions as a classification scheme,

| Formula                        | Anions            | Mineral    |         |
|--------------------------------|-------------------|------------|---------|
| SiO <sub>3</sub> <sup>2-</sup> | Silicon , Oxygen  | Silicates  |         |
| BO <sub>3</sub> <sup>3-</sup>  | Boron , Oxygen    | Borates    |         |
| CO <sub>3</sub> <sup>2-</sup>  | Carbon , Oxygen   | Carbonates |         |
| FO <sub>3</sub> <sup>1-</sup>  | Florine , Oxygen  | Flourates  | •       |
| CIO <sub>3</sub> 1-            | Chlorine , Oxygen | Chlorates  | des     |
| BrO <sub>3</sub> 1-            | Bromine , Oxygen  | Bromates   | Halides |
| IO <sub>3</sub> <sup>1-</sup>  | lodine , Oxygen   | lodates    | _       |







## Physical properties

## Melting and boiling points

Ionic compounds are characterized by high melting and boiling points due to the strength of the ionic bond, which is related to the attraction between the positive and negative ions of the crystal and is characterized by different bright colors due to the presence of transition metals within the crystalline network.

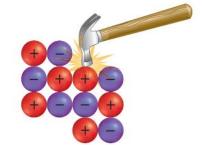
## Electric conductivity

The Electric conductivity <u>depends on the availability of free-moving charges</u>, and because the charges are coherent in the case of solid ionic materials, they do not conduct electricity. On the contrary, in the case of molten or solution, they conduct the current due to the presence of charged particles free movement.

Electrolyte: An ionic compound that conduct the electric current.

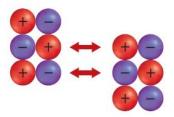
#### Hardness

Ion compounds are characterized by hardness and rigidity, due to the apparent coherence between the various charged ionic compound components.


## The brittleness

In the ionic crystal, when we apply force, the charged particles move along the crystal, causing their rearrangements to meet similar charges. The repulsion between them affects the cohesion of the crystal, making it crack and crumbl




Undisturbed ionic crystal

Before the force is applied, the crystal has a uniform pattern of ions.



Applied force realigns particles.

If the applied force is strong enough, it pushes the ions out of alignment.



Forces of repulsion break crystal apart.

A repulsive force created by nearby likecharged ions breaks apart the crystal.

## Energy and the ionic bonds

**Exothermic reaction**: The reaction that releases energy as it occurs.

**Endothermic interaction**: The reaction that absorbs energy as it occurs.

The reactions in which the ionic compounds formed are described as Exothermic reactions. Ion energy in the case of the Compound is less than the energy in case of single atoms. Therefore, when combined and stabilized, the difference in energy releaseWhen crystal acquires the same amount of energy that it releases as it forms, it disintegrates into its basic components.









## Lattice Energy

**Lattice energy**: The energy required to separate ions of 1 mole ionic material, in this case the energy is absorbed, and increases as the attraction between the components of the compound increase

It is also the same amount of energy released during the formation of the same 1 mol, in this case energy is release

Lattice energy is related to

#### lons size

- ✓ The Lattice energy is reduced by increasing the volume of the component ions.
- ✓ The greater the volume of ions, the greater the distances between them, which reduces the forces of attraction and thus reduces the Lattice energy.
- ✓ The compounds made by the lithium are stronger than those made of potassium because lithium is smaller than potassium.

## The amount of the Charge

- ✓ The Lattice energy increases as the component ions charge increase.
- ✓ MgO compound has a Lattice energy 4 times greater than the NaF compound
- ✓ Mg ion charge is 2+ and O ion charge is 2-
- √ Na ion charge is 1+ and F ion charge is 1-

| 78) Most ionic compounds are                                  | at room temperatur              |
|---------------------------------------------------------------|---------------------------------|
| 79) Is the following sentence true or false? Ionic compou     | unds generally have low melting |
| points                                                        |                                 |
| 80) Circle the letter of each statement that is true about ic | onic compounds.                 |
|                                                               |                                 |

- a. When dissolved in water, ionic compounds can conduct electricity.
- **b.** When melted, ionic compounds do not conduct electricity.
- c. Ionic compounds have very unstable structures.
- d. lonic compounds are electrically neutral.









## Formulas for ionic compounds

## Chemical formula unit: Chemical formula of ionic compoun

Since the ionic compound consists of a large number of positive and negative ions, the smallest value to be extracted from the positive and negative ion ratios is what is written when writing the formula unit. CaCl2 is the smallest percentage present in the calcium chloride compounFinally, the total charge on the compound Is zero.

#### Monoatomic ions

**Monoatomic ion**: An ion consisting of only one atom, either positive resulting from a metal or negative result from a nonmetal.

**The binary ion compounds** are composed of two monoatomic ions, positive one and the other is negativ The ions are monoatomic ions regardless of its charge or the value of the charg Fluoride (F<sup>1-</sup>), magnesium (Mg<sup>2+</sup>) and aluminum (Al<sup>3+</sup>) are monoatomic ions.

| Group | Element              | Ion charge |
|-------|----------------------|------------|
| 1     | H, Li, Na, K, Rb, Cs | 1+         |
| 2     | Be, Mg, Ca, Sr, Ba   | 2+         |
| 13    | Al                   | 3+         |
| 15    | N, P, As             | 3-         |
| 16    | O, S, Se, Te         | 2-         |
| 17    | F, Cl, Br, I         | 1-         |

## Oxidation numbers

Oxidation number: The charge carried by monoatomic ion.

The Oxidation number indicates the number of electrons lost gained during or formation. The Oxidation number of sodium in sodium chloride is +1 and the chlorine oxidation is -1. The possible oxidation numbers for the transition elements falling within groups 3 to 12 differ in the periodic table as well as some elements of groups 13 and 14 as in the following tabl

| Group | Common Ions                                                                                                                                         |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 3     | Sc <sup>3+</sup> , Y <sup>3+</sup> , La <sup>3+</sup>                                                                                               |
| 4     | Ti <sup>2+</sup> , Ti <sup>3+</sup>                                                                                                                 |
| 5     | V <sup>2+</sup> , V <sup>3+</sup>                                                                                                                   |
| 6     | Cr <sup>2+</sup> , Cr <sup>3+</sup>                                                                                                                 |
| 7     | Mn <sup>2+</sup> , Mn <sup>3+</sup> , Tc <sup>2+</sup>                                                                                              |
| 8     | Fe <sup>2+</sup> , Fe <sup>3+</sup>                                                                                                                 |
| 9     | Co <sup>2+</sup> , Co <sup>3+</sup>                                                                                                                 |
| 10    | Ni <sup>2+</sup> , Pd <sup>2+</sup> , Pt <sup>2+</sup> , Pt <sup>4+</sup>                                                                           |
| 11    | Cu+, Cu <sup>2+</sup> , Ag+, Au+, Au <sup>3+</sup>                                                                                                  |
| 12    | $Zn^{2+}$ , $Cd^{2+}$ , $Hg_2^2 + Hg^{2+}$                                                                                                          |
| 13    | Al <sup>3+</sup> , Ga <sup>2+</sup> , Ga <sup>3+</sup> , In <sup>+</sup> , In <sup>2+</sup> , In <sup>3+</sup> , Tl <sup>+</sup> , Tl <sup>3+</sup> |
| 14    | Sn <sup>2+</sup> , Sn <sup>4+</sup> , Pb <sup>2+</sup> , Pb <sup>4+</sup>                                                                           |









# Formulas for binary ionic compounds

The basics of writing the formula

- 1) The total charge of any compound is always zero.
- 2) The positive ion symbol is written first followed by the negative ion symbol.
- 3) Subscripts which are small numbers shall be placed to the lower right of the symbol of the element indicating its number in the compound
- 4) If a number is not written below the symbol, it indicates that the ratio is equal to one (1)

Example

#### Sodium fluoride

- ✓ Elements: sodium Na and fluorine F
- √ Fluoride ion charge is -1 while sodium ion charge is + 1
- ✓ Number of electrons lost by the metal equals the number of electrons gained by the nonmetal.



- √ The formula is N1<sup>+</sup> F<sup>1-</sup>
- ✓ Total charge: +1-1 = 0

Example 2

#### Potassium oxide

- ✓ Elements: oxygen O and potassium K
- ✓ Oxygen ion Charge is-2 while potassium ion + 1
- ✓ Number of electrons acquired by the nonmetal is twice electrons lost by the metal.

 $K_2O$ 

- √ The formula would be K¹+ O²-
- ✓ Total charge:  $(+1 \times 2) 2 = 0$

| 81) Determine the formula for the compound formed from aluminum ions and sul ions. |                     |              | na sama     |           |         |
|------------------------------------------------------------------------------------|---------------------|--------------|-------------|-----------|---------|
|                                                                                    |                     |              |             |           |         |
| 82) Determine<br>Chloride io                                                       | the formula for ns. | the compound | formed from | Magnesium | ions an |
|                                                                                    |                     |              |             |           |         |









# Polyatomic ionic compounds

Polyatomic ions: ions made up of more than one atom.

Basics of writing the formula

Are the same as the principles of binary ionic formulations because the polyatomic ion behaves as monoatomic ions. Since its charge is constant, the number of ions involved varies according to the number of corresponding charges.

Oxygen ions: A polyatomic ion consists of a nonmetal attached to one or more oxygen atoms.

The nonmetal sometimes has different oxygen ions according to the number of oxygen atoms.

| lon                | Name               | lon                                            | Name                    |
|--------------------|--------------------|------------------------------------------------|-------------------------|
| NH <sub>4</sub> +  | ammonium           | 104-                                           | periodate               |
| NO <sub>2</sub> -  | nitrite            | C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> - | acetate                 |
| NO <sub>3</sub> -  | nitrate            | H <sub>2</sub> PO <sub>4</sub> -               | dihydrogen<br>phosphate |
| OH-                | hydroxide          | CO <sub>3</sub> <sup>2-</sup>                  | carbonate               |
| CN-                | cyanide            | SO <sub>3</sub> <sup>2-</sup>                  | sulfite                 |
| MnO <sub>4</sub> - | permanganate       | SO <sub>4</sub> <sup>2-</sup>                  | sulfate                 |
| HCO <sub>3</sub> - | hydrogen carbonate | S <sub>2</sub> O <sub>3</sub> <sup>2-</sup>    | thiosulfate             |
| CIO-               | hypochlorite       | 022-                                           | peroxide                |
| ClO <sub>2</sub> - | chlorite           | CrO <sub>4</sub> <sup>2-</sup>                 | chromate                |
| ClO <sub>3</sub> - | chlorate           | Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup>   | dichromate              |
| ClO <sub>4</sub> - | perchlorate        | HPO <sub>4</sub> <sup>2-</sup>                 | hydrogen phosphate      |
| BrO <sub>3</sub> - | bromate            | PO <sub>4</sub> <sup>3-</sup>                  | phosphate               |
| 103-               | iodate             | AsO <sub>4</sub> <sup>3-</sup>                 | arsenate                |

## Example

## **Ammonium oxide**

✓ Elements: oxide O<sup>2-</sup>, ammonium NH<sub>4</sub><sup>+</sup>

√ The formula would be NH<sub>4</sub>¹+ O²-

✓ total charge:  $(+1 \times 2) -2 = 0$ 









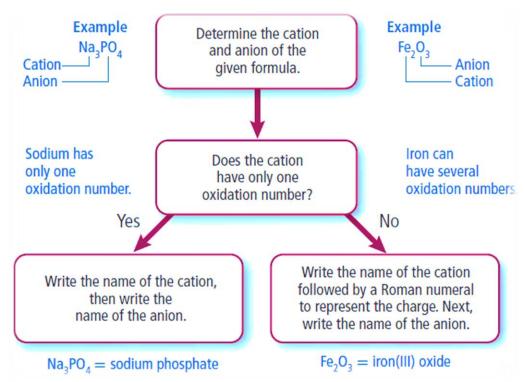


## Names of ions and ionic compounds

## nomenclature of negative oxygen ions

Because of the difference in the number of possible oxygen atoms in the ion, the name is different. For example, molecules with more oxygen end up with (ate) while those with less oxygen atoms end up with (ete)

| Nitrogen ions |            | Sulph                         | ur ions |
|---------------|------------|-------------------------------|---------|
| $NO_3^-$      | $NO_2^{-}$ | SO <sub>4</sub> <sup>2-</sup> | SO      |


Nitrate Nitrite Sulphate Sulphete

If the ion have four different forms of oxygen ions, the name is as follows,

CIO<sup>-</sup> CIO<sub>2</sub><sup>-</sup> CIO<sub>3</sub><sup>-</sup> CIO<sub>4</sub><sup>-</sup> Hypochlorete Chlorete Chlorate Perchlorate

## Naming ionic compounds

- 1) Negative ion name is written first followed by the positive ion.
- 2) The name of the element is used in a case that is positive in a monoatomic ion.
- 3) Add the suffix (ide) to the name of the element in the case of formation of monoatomic negative ion.
- 4) Oxidation number for the positive ion is written in case it has more than one oxidation number.



83) Write the chemical formula for the following binary ionic compounds.





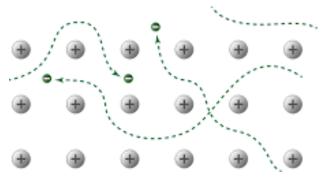




| sodium fluoride                   | h. calcium phosphide |
|-----------------------------------|----------------------|
| potassium chloride                | i. magnesium oxide   |
| calcium oxide                     | j. aluminum chloride |
| lithium bromide                   | k. sodium iodide     |
| beryllium chloride                | I. potassium nitride |
| f. potassium sulphide             | m. lithium sulfide   |
| g. magnesium nitride              | n. barium phosphide  |
| 84) Write the name for the follow |                      |
| LiCl                              |                      |
| MgS                               | 1.2.                 |
| NaCl                              | j. BeO               |
| Al <sub>2</sub> O <sub>3</sub>    | k. CaF <sub>2</sub>  |
| CaS                               | I. BaBr <sub>2</sub> |
| f. Zn <sub>3</sub> P <sub>2</sub> | m. Na <sub>3</sub> N |
|                                   |                      |






## Metallic bonds

What are the similarities between the bonds in metals and bonds in ionic compounds?

- 1) The bonds depend on the attraction between the different charges.
- 2) Metals form crystalline networks like those formed by ionic compounds.

## A sea of Electrons

Instead of sharing or losing valence electrons, the outer energy levels of the metal overlap. The sea of electrons surrounds the positive ions, forming the metal grid together. The electrons are not bound to a specific atom but are transported freely from one atom to another.



**Electrons sea Model**: Interference between the external energy levels of metal ions and the surrounding electrons.

**Delocalized electrons**: Electrons that move freely between the positive ions that form the metal gri

**Metallic bond**: the attraction force between positive ions and the delocalized electrons in the metal gri

# Properties of metals Melting and boiling points

Metals have high melting and boiling points because of the strength of the metal bond, but the melting point is less than expected because positive ions and negative electrons do not need much energy to slide over each other, but they need great energy to separate completely, which is reflected on high boiling points.

The boiling point of metals varies. Mercury is found as a liquid at room temperatures, which is used in thermometers. In contrast, Tungsten melting point is 3422°C, so it is used in manufacturing of lamps and spacecraft.

Malleability, ductility, and durability









**Malleability**: Ability of a substance to be deformed or molded into a different shape

**Ductility**: The material's ability to be stretched into a wire

Metals are durable, because particles move by pushing or pulling, emphasizing that bonding is very strong between positive ions and the sea of electrons, making the majority of metals durable

## Thermal and electric conductivity

Because of the free movement of electrons, metals are good conductors of heat and electricity, and not only that, but it is also the main reason of some metals' luster.

# Hardness and strength

The greater the number of positive and negative charges in a metal grid, the stronger the metal. Transition metals not only participate in the grid with (s) sublevel electrons but also some of (d) sub-level electrons, which makes them stronger and harder.

#### Why do iron and nickel stronger and harder than lithium and sodium?

Lithium and sodium soft metals as well as all alkaline metals (Group I metals) because they participate in the metal grid with a single electron. In contrast, iron and nickel elements participate with (d) sub-level electrons and (s) sub-level electrons as well, which makes them stronger and harder.

## Metal alloys

**Alloy**: A mixture of elements with unique metallic properties. Such as steel and bronz

## Alloys properties

Alloys properties differ from constituents, although they are a mixture rather than a compounSteel, for example, is made of iron mixed with elements such as carbon but much harder.









Write the meaning of each vocabulary term below. Then invent a method that will help you remember the meaning of the terms. One has been done for you.

| Vocabulary               | Meaning                                                                                                           | How I'm going to remember the meaning                                 |
|--------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 85) formula unit         | shows what anions and cations are in an ionic compound and the simplest ratio of these ions                       | formula unit - "for"<br>showing ions and<br>ratio simply, g.,<br>NaCl |
| 86) ionic bond           | the force of attraction between an anion and a cation                                                             |                                                                       |
| 87) ionic<br>compound    | what forms when anions and cations are joined by ionic bonds                                                      |                                                                       |
| 88) metallic bond        | the attraction between a metal cation and the electrons that surround it                                          |                                                                       |
| 89) valence electron     | an electron located in the outer energy level of an electron cloud                                                |                                                                       |
| 90) chemical formula     | a combination of element symbols and subscripts that shows the composition of a representative unit of a compound |                                                                       |
| 91) electron dot formula | uses an element's symbol and dots to represent valence electrons and model an atom                                |                                                                       |
| 92) halide ion           | an anion formed when a halogen atom gains an electron                                                             |                                                                       |
| 93) coordination number  | the number of oppositely charged ions that surround an ion in an ionic crystal                                    |                                                                       |
| 94) alloy                | a mixture of a metal and at least one other element                                                               |                                                                       |
| 95) octet rule           | explains how elements in a compound try to achieve the configuration of a noble gas                               |                                                                       |







# REVISION

| <ul><li>☐ they are also know</li><li>☐ they are formed w</li><li>☐ they are larger that</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                      | ey were formed                                                                                                                              | rect?                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| <ul><li>☐ they are also known</li><li>☐ they are formed they are larger them.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                      | hey were formed                                                                                                                             | rrect?                           |
| 98) Which of the followsodium? $\Box Na_{(s)} \rightarrow Na^{+}_{(g)} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | sents the 1st Ionization $\square Na_{(g)} \rightarrow Na_{(g)}^{+} + e^{-\frac{1}{2}}$                                                     | -                                |
| □ Na <sub>(s)</sub> $\rightarrow$ Na <sup>+</sup> <sub>(s)</sub> + 99) Which of the follo sodium?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | $\square$ Na <sub>(s)</sub> + e- $\rightarrow$ Na <sup>+</sup> <sub>(g)</sub> sents the 2nd Ionization                                      |                                  |
| $ \square  Na_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(s)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \ + \\ \square  Na^+_{(g)} \ \to \ N2^+_{(g)} \$ |                                                        | $ \square \operatorname{Na}_{(s)} \to \operatorname{N2}^+_{(g)} + 2e$ $\square \operatorname{Na}^+_{(g)} \to \operatorname{N2}^+_{(g)} + e$ |                                  |
| 100) Which one of the  ☐ Na and F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | following pairs atoms is  ☐ C and F                    | s most likely to form an<br>☐ N and F                                                                                                       | ionic bond?<br>□ O and F         |
| 101) Aluminum is in G  □ AlO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | roup 13. Its oxide will har $\square$ AlO <sub>2</sub> | ave the formula  □ Al <sub>2</sub> O <sub>3</sub>                                                                                           | □ Al <sub>3</sub> O <sub>2</sub> |
| ☐ it has a high meltir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng point<br>city at room temperature                   | sodium chloride is incor                                                                                                                    | rect?                            |











| 103) T         | he structure normally asso                            | ciated with ior   | nic bonding is            |                       |
|----------------|-------------------------------------------------------|-------------------|---------------------------|-----------------------|
|                | a giant lattice                                       |                   |                           |                       |
|                | a simple molecule                                     |                   |                           |                       |
|                | a giant molecule                                      |                   |                           |                       |
|                | a regular arrangement of ior                          | ns surrounded b   | by a sea, or cloud,       | of electrons          |
| <b>104</b> ) V | Which one of the following o                          | correctly descr   | ibes the trend in e       | electronegativity?    |
|                | increases across a period a                           | nd decreases d    | own a group               |                       |
|                | decreases across a period a                           | and decreases     | down a group              |                       |
|                | increases across a period a                           | nd increases do   | own a group               |                       |
|                | decreases across a period a                           | and increases d   | own a group               |                       |
| 105) V         | Vhich one of the following i                          | s not true of m   | netallic bonding?         |                       |
|                | it gives rise to excellent elect                      | trical conductivi | ty                        |                       |
|                | electrons are free to move the                        | hroughout the s   | tructure                  |                       |
|                | the strength of metallic bonds increases down a group |                   |                           |                       |
|                | the strength of metallic bond                         | ling affects the  | boiling point of me       | tals                  |
| 106) V         | Vhich one of the following s                          | tatements abo     | ut the melting poir       | nt of metals is true? |
|                | sodium has a lower melting                            | point than pota   | ssium                     |                       |
|                | sodium has a higher melting                           | point than mag    | gnesium                   |                       |
|                | potassium has a higher mel                            | ting point than r | ubidium                   |                       |
|                | lithium has a lower melting p                         | point than sodiu  | m                         |                       |
| <b>107</b> ) V | Vhich one of the following                            | g statements a    | about the three s         | states of matter is   |
| ine            | correct?                                              |                   |                           |                       |
|                | in solids the particles vibrate                       | about fixed po    | sitions                   |                       |
|                | energy is released when a g                           | jas turns back t  | o a liquid                |                       |
|                | particles in gases move in a                          | random manne      | er                        |                       |
|                | the closer particles are toge                         | ther, the smalle  | r the force of attrac     | ction between them    |
| 108) V         | Which of the following mole                           | cules0 has an     | ionic bond?               |                       |
|                | $O_2$ $\square$ $H_2O$                                | □ NaCl            | $\square$ SO <sub>2</sub> | $\square$ $Cl_2$      |



27





| 109) Which factor                            | or is used to deter        | mine if a bond  | l is considered i                 | onic?               |
|----------------------------------------------|----------------------------|-----------------|-----------------------------------|---------------------|
| ☐ Electronega                                | ativity                    | □ Char          | rge                               | □ Size              |
| □ Number of                                  | atoms bound                | ☐ Mass          | S                                 |                     |
| 110) Which of th                             | e following molec          | ules has an io  | nic bond?                         |                     |
| $\square$ $N_2$                              | $\square$ H <sub>2</sub> O |                 | □ CH <sub>4</sub>                 | □ KCI               |
| 111) KCl is cons                             | idered what kind           | of solid?       |                                   |                     |
| ☐ Molecular                                  |                            |                 |                                   |                     |
| □ Network                                    |                            |                 |                                   |                     |
| ☐ Ionic                                      |                            |                 |                                   |                     |
| ☐ Metallic                                   |                            |                 |                                   |                     |
| ☐ Macromole                                  | cular                      |                 |                                   |                     |
| 112) Electrons in                            | nvolved in bonding         | g between ator  | ms are                            |                     |
| □ valence ele                                | ectrons                    |                 | $\sqsupset$ inside the nucle      | eus                 |
| □ closest to the                             | he nucleus                 |                 | ☐ positively char                 | ged                 |
| 113) Each family                             | in the periodic ta         | ble has its owr | n characteristic <sub>l</sub>     | oroperties based on |
| the number of                                | of                         |                 |                                   |                     |
| $\square$ neutrons                           | □ valence                  | electrons [     | ☐ protons                         | □ ions              |
| 114) What is the                             | greatest number            | of valence ele  | ctrons an atom                    | can have? With the  |
| exception of                                 | helium.                    |                 |                                   |                     |
| □ 2                                          | □ 3                        |                 | □ 8                               | □ 12                |
| 115) If atoms of a                           | a halogen nonme            | tal (Group 17)  | gains one elect                   | ron, the atoms then |
| have                                         |                            |                 |                                   |                     |
| ☐ no valence                                 | electrons                  |                 | ☐ 7 valence elect                 | rons                |
| ☐ 8 valence e                                | electrons                  |                 | ☐ 17 valence ele                  | ctrons              |
| 116) When an at                              | om loses an elec           | tron, it become | es a                              |                     |
| □ positive ion                               | n □ negative               | ion [           | ☐ neutral ion                     | ☐ neutral atom      |
| 117) An ionic bond is the attraction between |                            |                 |                                   |                     |
| ☐ similarly ch                               | arged ions                 |                 | $\square$ oppositely charged ions |                     |
| □ neutral ions                               | 3                          |                 | ☐ neutral atoms                   |                     |



28







| 118) The element boron is directly abo                     | ve aluminum on the periodic table vynicr           |  |  |
|------------------------------------------------------------|----------------------------------------------------|--|--|
| statement about boron is true?                             |                                                    |  |  |
| $\ \square$ Boron is in the same period as aluminum        |                                                    |  |  |
| $\hfill \square$ Boron is in the same group as alumi       | num and has 5 valence electrons                    |  |  |
| $\ \square$ Boron has 5 valence electrons and is           | s in the same period as aluminum                   |  |  |
| ☐ Boron is in the same group as alumi                      | num and has 3 valence electrons                    |  |  |
| 119) Magnesium bromide is an ionic co                      | mpound with the chemical formula MgBr <sub>2</sub> |  |  |
| What does the "2" tell you?                                |                                                    |  |  |
| ☐ Bromide has a 2- charge                                  |                                                    |  |  |
| $\ \square$ There are two magnesium ions to ev             | very bromide ion.                                  |  |  |
| ☐ There are two bromide ions for every                     | y magnesium ion.                                   |  |  |
| ☐ Bromide has a 2+ charge                                  |                                                    |  |  |
| 120) What is the chemical name for the                     | compound with the formula N2S?                     |  |  |
| ☐ sodium fluoride                                          | □ magnesium sulfide                                |  |  |
| ☐ lithium oxide                                            | □ sodium sulfide                                   |  |  |
| 121) In the chemical formula for an ionic                  | compound, which item is written first?             |  |  |
| $\square$ positive ion $\square$ negative ion              | □ subscript □ charge                               |  |  |
| 122) Which of the following is a character                 | eristic property of ionic compounds?               |  |  |
| ☐ They have low melting points.                            |                                                    |  |  |
| ☐ They have low boiling points.                            |                                                    |  |  |
| $\ \square$ They form hard, brittle crystals with $\alpha$ | characteristic shapes.                             |  |  |
| $\hfill\Box$ They contain no charged particles.            |                                                    |  |  |
| 123) In what form can an ionic compoun                     | d conduct electricity?                             |  |  |
| □ as a solid                                               | □ as a crystal                                     |  |  |
| $\hfill \square$ when dissolved in water                   | □ when warmed slightly                             |  |  |
| 124) A chemical bond formed when two                       | atoms share electrons is called a(n)               |  |  |
| $\square$ ionic bond $\square$ covalent bond               | $\square$ polyatomic bond $\square$ crystal bond   |  |  |
| 125) If you found a carbon-13 atom, you                    | would know that                                    |  |  |
| ☐ it has 13 protons                                        | ☐ it has 13 electrons                              |  |  |
| ☐ it has 13 neutrons                                       | ☐ it has 7 neutrons                                |  |  |









| a(n)                                                                              | iween a positive n                                                            | ietai ion and the | elections       | surrounding it is   |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------|-----------------|---------------------|
| ☐ chemical bond                                                                   | ☐ covalent bond                                                               | □ ionic bo        | nd 🗆            | metallic bond       |
| 127) Which of the follo                                                           | _                                                                             |                   |                 | -                   |
| □ polar                                                                           | □ alloy                                                                       | □ ductile         |                 | malleable           |
| 128) Which of the follo                                                           | wing terms means                                                              | that metals can   | be pulled       | I into thin strands |
| □ polar                                                                           | □ alloy                                                                       | ☐ ductile         |                 | malleable           |
| True/False: Indicat                                                               | e whether the s                                                               | tatement is true  | e (A) or t      | false (B).          |
| 129) ( ) The valence                                                              | electrons are thos                                                            | se electrons clos | est to the      | nucleus.            |
| 130) ( ) Each family in                                                           | n the periodic table                                                          | has its own char  | acteristic      | properties based    |
| upon its number o                                                                 | f valence electrons                                                           | 3.                |                 |                     |
| 131) ( ) When an ato                                                              | om gains an electro                                                           | on, it becomes a  | positive i      | on.                 |
| 132) ( )The attract                                                               | 132) ( )The attraction between a positive ion and a negative ion results in a |                   |                 |                     |
| covalent bon                                                                      |                                                                               |                   |                 |                     |
| 133) ( ) Orderly crystal shapes, high melting points, and electrical conductivity |                                                                               |                   |                 |                     |
| when dissolved in                                                                 |                                                                               | _                 |                 |                     |
| 134) ( ) When electrons are transferred between two atoms, a covalent bond is     |                                                                               |                   |                 |                     |
| formed.                                                                           |                                                                               |                   |                 |                     |
| Complete each sta                                                                 | atement by mat                                                                | ching the wo      | <u>d with t</u> | he statement.       |
| valence                                                                           | positive                                                                      | equal             | most            | negative            |
| 135) Elements in Grou                                                             | ıp 17 (the halogen                                                            | s) are the        | rea             | ctive nonmetals.    |
| 136) Elements in Grou                                                             | p 1 lose one electr                                                           | on to form ions w | vith a(n) $\_$  | charge              |
| 137) An element is sta                                                            | ble when it has a                                                             | fullsł            | nell.           |                     |
| 138) When an ionic compound forms, the total number of positive charges and the   |                                                                               |                   |                 |                     |
| total number of ne                                                                | total number of negative charges must be                                      |                   |                 |                     |









#### Use the diagram to answer the next set of questions.

#### Five Groups of Elements From the Periodic Table

| 1               |  |  |
|-----------------|--|--|
| 3               |  |  |
| Li              |  |  |
| Lithium         |  |  |
| 6.941           |  |  |
| 11              |  |  |
| Na              |  |  |
| Sodium          |  |  |
| 22.990<br>19    |  |  |
|                 |  |  |
| K               |  |  |
| Potassium       |  |  |
| 39.098          |  |  |
| 37              |  |  |
| Rb              |  |  |
| Rubidium        |  |  |
| 85.468          |  |  |
| 55<br><b>Cs</b> |  |  |
|                 |  |  |
| Cesium          |  |  |
| 132.91          |  |  |
| Fr              |  |  |
| Francium        |  |  |
| (223)           |  |  |
| (223)           |  |  |

|     | 2                |
|-----|------------------|
|     | 4                |
|     | Be               |
|     | Beryllium        |
|     | 9.012<br>12      |
|     |                  |
|     | Mg               |
|     | Magnesium        |
|     | 24.305           |
|     | 20               |
|     | Ca               |
|     | Calcium<br>40.08 |
|     |                  |
|     | 38               |
|     | Sr               |
|     | Strontium        |
|     | 87.62            |
|     | 56<br><b>Ba</b>  |
|     | Barium           |
|     |                  |
|     | 137.33           |
|     | Ra               |
|     | Radium           |
| - 1 |                  |
| - 1 | (226)            |

| 13       |  |  |
|----------|--|--|
| 5        |  |  |
| В        |  |  |
| Boron    |  |  |
| 10.811   |  |  |
| 13       |  |  |
| AI       |  |  |
| Aluminum |  |  |
| 26.982   |  |  |
| 31       |  |  |
| Ga       |  |  |
| Gallium  |  |  |
| 69.723   |  |  |
| 49       |  |  |
| In       |  |  |
| Indium   |  |  |
| 114.82   |  |  |
| 81       |  |  |
| TI       |  |  |
| Thallium |  |  |
| 204.37   |  |  |
|          |  |  |

| 17       |  |  |
|----------|--|--|
| 9        |  |  |
| F        |  |  |
| Fluorine |  |  |
| 18.998   |  |  |
| 17       |  |  |
| CI       |  |  |
| Chlorine |  |  |
| 35.453   |  |  |
| 35       |  |  |
| Br       |  |  |
| Bromine  |  |  |
| 79.904   |  |  |
| 53       |  |  |
|          |  |  |
| lodine   |  |  |
| 126.90   |  |  |
| 85       |  |  |
| At       |  |  |
| Astatine |  |  |
| (210)    |  |  |

|   | 18      |
|---|---------|
| ſ | 2       |
| 1 | He      |
| 1 | Helium  |
| l | 4.0026  |
| Γ | 10      |
| 1 | Ne      |
| I | Neon    |
| L | 20.179  |
| ſ |         |
| 1 | Ar      |
| ı | Argon   |
| L | 39.948  |
| I | 36      |
| Ì | Kr      |
| I | Krypton |
| L | 83.80   |
| I | 54      |
| l | Xe      |
| ı | Xenon   |
| L | 131.30  |
| ı | 86      |
| 1 | Rn      |
| I | Radon   |
| L | (222)   |
|   |         |

| 139) | The | group | containing | the | most | reactive | nonmetals |
|------|-----|-------|------------|-----|------|----------|-----------|
| /    |     | 3 1   |            |     |      |          |           |

|   | 1 |
|---|---|
| _ |   |

| - 1 |    |   |
|-----|----|---|
|     | ll | _ |

| 1 | 3 |
|---|---|
|   |   |

| 1 | 7 |
|---|---|
|   |   |

| П | 1 | Я |
|---|---|---|

140) In each period, how does the number of electrons in each kind of atom change from left to right between Groups 1 and 2?

| ramaine | tha | sameincreases | hv  |  |
|---------|-----|---------------|-----|--|
| Temains | uic | Samemoreases  | IJУ |  |

| $\square$ increases | by | 2 |
|---------------------|----|---|
|---------------------|----|---|

$$\square$$
 decreases by 1

| ☐ decrease | by | 2 |
|------------|----|---|
|------------|----|---|

141) In an electron dot diagram of aluminum (Al), how many dots should be drawn around the element's symbol?

|  | 1 |
|--|---|
|--|---|

142) Which group of elements loses electrons most easily?

□ 1

□ 2

□ 13

□ 17

□ 18

143) Which group contains elements with two valence electrons?

□ 1

 $\square$  2

□ 13

□ 17

□ 18

144) How many atoms of a Group 17 element would be needed to react with one atom of a Group 2 element?

 $\Box$  1

□ 2

□ 3

□ 4

□ 5









# Use the table below to answer the following questions.

# **lons and Their Charges**

| Name      | Charge | Symbol or Formula |
|-----------|--------|-------------------|
| Lithium   | ?      | Li <sup>+</sup>   |
| <u>?</u>  | 1+     | Na <sup>+</sup>   |
| Calcium   | 2+     | ?                 |
| Chloride  | 1–     | ?                 |
| ?         | 1–     | NO <sub>3</sub> - |
| Carbonate | 2–     | ?                 |

|                                                                                                                |                          |                  |                                                           | -                   |
|----------------------------------------------------------------------------------------------------------------|--------------------------|------------------|-----------------------------------------------------------|---------------------|
| 145) What is the                                                                                               | e charge for a lit       | hium ion?        |                                                           |                     |
|                                                                                                                | □ 3+                     | □ 1 <sup>-</sup> | □ 2+                                                      | □ 1+                |
| 146) What is the                                                                                               | e symbol for a c         | alcium ion?      |                                                           |                     |
|                                                                                                                | □ Ca <sup>2+</sup>       | □ Ca ¹+          | □ Ca ²-                                                   | □ Ca ³+             |
| 147) What is the                                                                                               | e chemical form          | nula of the co   | mpound that forms                                         | s when sodium and   |
| chloride cor                                                                                                   | mbine?                   |                  |                                                           |                     |
| □ SCI                                                                                                          | □ SC                     |                  | □ NaCl                                                    | □ NaCl              |
| 148) Which peri                                                                                                | odic table group         | has 2 electro    | ons in their outer n                                      | nost energy level?  |
| ☐ group 1 (alkaline metals) ☐ group 17 (halogens) ☐ group 16 (oxygen family) ☐ group 2 (alkaline earth metals) |                          |                  | ·                                                         |                     |
| 149) An elemen                                                                                                 | ıt's properties ca       | an be predicte   | d from its                                                |                     |
| <ul><li>□ number o</li><li>□ number o</li></ul>                                                                | f isotopes<br>f neutrons |                  | <ul><li>☐ location on the</li><li>☐ atomic mass</li></ul> | periodic table      |
| 150) The atomic                                                                                                | c mass of an ato         | om is the total  | number of in                                              | the nucleus         |
| □ protons a                                                                                                    | nd neutrons              |                  | ☐ protons                                                 |                     |
| □ protons a                                                                                                    | nd electrons             |                  | ☐ neutrons                                                |                     |
| 151) The zigzag                                                                                                | g line on the per        | iodic table div  | ides                                                      |                     |
| □ alkali met                                                                                                   | als and transition       | metals           | $\square$ semimetals an                                   | d transition metals |
| ☐ metals and                                                                                                   | d nonmetals              |                  | ☐ inert gases and                                         | d halogens          |
| 152) An atom of                                                                                                | f gold with 79 pr        | otons, 79 elec   | etrons, and 118 ne                                        | utrons would have a |
| mass numb                                                                                                      | er of                    |                  |                                                           |                     |
| □ 39                                                                                                           | □ 158                    |                  | □ 197                                                     | □ 276               |
|                                                                                                                |                          |                  |                                                           |                     |









| what type of ions                                 | s nave names en    | laing in -iae?                                                |                    |
|---------------------------------------------------|--------------------|---------------------------------------------------------------|--------------------|
| □ only cations                                    |                    | $\square$ only metal ions                                     |                    |
| $\square$ only anions $\square$ only gaseous ions |                    |                                                               |                    |
| 153) When Group                                   | 2 elements form    | n ions, they                                                  |                    |
| □ lose two pro                                    | tons               | ☐ lose two electrons                                          |                    |
| □ gain two pro                                    | otons              | $\ \square$ gain two electrons                                |                    |
| 154) What is the o                                | correct name for   | the N³- ion?                                                  |                    |
| □ nitrate ion                                     |                    | ☐ nitride ion                                                 |                    |
| □ nitrogen ion                                    |                    | ☐ nitrite ion                                                 |                    |
| 155) When naming                                  | g a transition met | tal ion that can have more than o                             | ne common ionic    |
| charge, the nu                                    | ımerical value of  | the charge is indicated by a                                  | <u></u> .          |
| □ prefix                                          |                    | ☐ Roman numeral following                                     | ng the name        |
| □ suffix                                          |                    | ☐ superscript after the na                                    | me                 |
| 156) Aluminum is                                  | a group 13 meta    | II. Which ion does Al typically for                           | rm?                |
| ☐ Al³-                                            | □ Al <sup>5-</sup> | □ Al <sup>5+</sup>                                            | ☐ Al <sup>3+</sup> |
| 157) Which of the                                 | following correct  | tly provides the name of the eler                             | ment, the symbol   |
| for the ion, an                                   | d the name of the  | e ion?                                                        |                    |
| $\Box$ fluorine, F <sup>+</sup> ,                 | fluoride ion       | $\ \square$ copper, $Cu^{\scriptscriptstyle +}$ , cuprous ion |                    |
| $\Box$ zinc, Zn <sup>2+</sup> , z                 | incate ion         | $\square$ sulfur, S <sup>2-</sup> , sulfurous ion             |                    |
| 158) The nonmeta                                  | als in Groups 16   | and 17                                                        |                    |
| ☐ lose electror                                   | ns when they form  | ions                                                          |                    |
| ☐ have a nume                                     | erical charge that | is found by subtracting 8 from the                            | group number       |
| □ all have ions                                   | s with a -1 charge |                                                               |                    |
| $\square$ end in -ate                             |                    |                                                               |                    |









| 159) Which of the follo                                                                                                                                                                                                                                                            | wing is NOT a cation?                          |                                          |                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------|-----------------------------|--|
| $\square$ iron(III) ion                                                                                                                                                                                                                                                            | □ Ca²+                                         | $\square$ sulfate                        | $\square$ mercurous ion     |  |
| 160) In which of the fo                                                                                                                                                                                                                                                            | llowing are the symbol                         | and name for the                         | ion given correctly?        |  |
| □ NH₄ <sup>+</sup> : ammonia;                                                                                                                                                                                                                                                      | H <sup>+</sup> : hydride                       | ☐ OH⁻: hydroxid                          | le; O <sup>2-</sup> : oxide |  |
| ☐ C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> ⁻: acetate                                                                                                                                                                                                                          | ; C <sub>2</sub> O <sub>4</sub> -: oxalite     | ☐ PO₃³⁻: phospl                          | hate; PO₄³⁻: phosphite      |  |
| 161) Which of the follow                                                                                                                                                                                                                                                           | wing correctly provides                        | the names and for                        | rmulas of polyatomic        |  |
| ions?                                                                                                                                                                                                                                                                              |                                                |                                          |                             |  |
| ☐ carbonate: HCO₃                                                                                                                                                                                                                                                                  | -; bicarbonate: CO <sub>3</sub> <sup>2</sup> - |                                          |                             |  |
| ☐ nitrite: NO⁻; nitrat                                                                                                                                                                                                                                                             | e: NO <sub>2</sub> -                           |                                          |                             |  |
| ☐ sulfite: S²⁻; sulfat                                                                                                                                                                                                                                                             | e: SO <sub>3</sub> -                           |                                          |                             |  |
| ☐ chromate: CrO₄²·                                                                                                                                                                                                                                                                 | ; dichromate: $Cr_2O_7^{2-}$                   |                                          |                             |  |
| 162) An -ate or -ite a compound contain                                                                                                                                                                                                                                            | t the end of a compose                         | und name usuall                          | y indicates that the        |  |
| ☐ fewer electrons the                                                                                                                                                                                                                                                              | nan protons                                    | □ only two elem                          | ents                        |  |
| □ neutral molecules                                                                                                                                                                                                                                                                | 3                                              | ☐ a polyatomic a                         | anion                       |  |
| 163) Which of the follo                                                                                                                                                                                                                                                            | wing compounds conta                           | ins the Mn³+ ion?                        |                             |  |
| ☐ MnS                                                                                                                                                                                                                                                                              | $\square$ Mn <sub>2</sub> O <sub>3</sub>       | $\square$ MnBr $_{\scriptscriptstyle 2}$ | □ MnO                       |  |
| <ul> <li>164) How are chemical formulas of binary ionic compounds generally written?</li> <li>□ cation on left, anion on right</li> <li>□ anion on left, cation on right</li> <li>□ Roman numeral first, then anion, then cation</li> <li>□ subscripts first, then ions</li> </ul> |                                                |                                          |                             |  |
| 165) Which of the follo                                                                                                                                                                                                                                                            | wing formulas represer                         | nts an ionic comp                        | ound?                       |  |
|                                                                                                                                                                                                                                                                                    |                                                |                                          |                             |  |
| $\square$ CS $_2$                                                                                                                                                                                                                                                                  | $\square N_2O_4$                               | □ Bal₂                                   |                             |  |
| -                                                                                                                                                                                                                                                                                  | □ N₂O₄<br>when combined with flu               | -                                        | -                           |  |
| -                                                                                                                                                                                                                                                                                  |                                                | -                                        | -                           |  |



34





| ,                                                                             | <b>G</b>                                   | ectly an ion pair and the io                                  | nic compound the                             |  |
|-------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|----------------------------------------------|--|
| two ions form?                                                                |                                            |                                                               |                                              |  |
| $\square$ Sn <sup>4+</sup> , N <sup>3-</sup> ; Sn <sub>4</sub> N <sub>3</sub> |                                            | ☐ Cr³+, I⁻; CrI                                               |                                              |  |
| $\Box$ Cu <sup>2+</sup> , O <sup>2-</sup> ; C                                 | $u_2O_2$                                   | $\Box$ Fe <sup>3+</sup> , O <sup>2-</sup> ; Fe <sub>2</sub> O | 3                                            |  |
| 168) Which of the                                                             | following correctly re                     | presents an ion pair and th                                   | ne ionic compound                            |  |
| the ions form?                                                                |                                            |                                                               |                                              |  |
| □ Ca²⁻, F⁻; Ca                                                                | F <sub>2</sub>                             | $\Box$ Ba <sup>2+</sup> , O <sup>2-</sup> ; Ba <sub>2</sub> C | 02                                           |  |
| □ Na⁺, Cl⁻; Na                                                                | CI <sub>2</sub>                            | $\Box$ Pb <sup>4+</sup> , O <sup>2-</sup> ; Pb <sub>2</sub> C | )4                                           |  |
| 169) Which of the                                                             | following compounds                        | s contains the lead(II) ion?                                  | •                                            |  |
| ☐ PbO                                                                         | $\square$ Pb <sub>2</sub> O                | ☐ PbCl₄                                                       | $\square$ Pb <sub>2</sub> S                  |  |
| 170) Which set of                                                             | chemical name and                          | chemical formula for the s                                    | ame compound is                              |  |
| correct?                                                                      |                                            |                                                               |                                              |  |
| ☐ iron(II) oxide                                                              | , Fe <sub>2</sub> O <sub>3</sub>           | $\Box$ tin(IV) bromide,                                       | $\square$ tin(IV) bromide, SnBr <sub>4</sub> |  |
| ☐ aluminum flu                                                                | ıorate, AIF₃                               | □ potassium chlor                                             | $\square$ potassium chloride, $K_2Cl_2$      |  |
| 171) What is the c                                                            | orrect formula for po                      | tassium sulfite?                                              |                                              |  |
| ☐ KHSO <sub>3</sub>                                                           | $\square$ K <sub>2</sub> SO <sub>3</sub>   | □ KHSO₄                                                       | $\square \ K_2SO_4$                          |  |
| 172) Which set of                                                             | chemical name and                          | chemical formula for the s                                    | ame compound is                              |  |
| correct?                                                                      |                                            |                                                               |                                              |  |
| ☐ ammonium s                                                                  | sulfite, (NH <sub>4</sub> ) <sub>2</sub> S | ☐ lithium carbonat                                            | te, LiCO <sub>3</sub>                        |  |
| ☐ iron(III) phos                                                              | sphate, FePO₄                              | ☐ magnesium dich                                              | ☐ magnesium dichromate, MgCrO₄               |  |
| 173) What type of                                                             | compound is CuSO4                          | ?                                                             |                                              |  |
| ☐ monatomic id                                                                | onic                                       | □ polyatomic ionic                                            | □ polyatomic ionic                           |  |
| ☐ polyatomic c                                                                | ovalent                                    | ☐ binary molecular                                            | ☐ binary molecular                           |  |
| 174) Which polyate                                                            | omic ion forms a neu                       | utral compound when comb                                      | bined with a group                           |  |
| 1A monatomic                                                                  | ion in a 1:1 ratio?                        |                                                               |                                              |  |
| ☐ ammonium                                                                    | □ nitrate                                  | □ carbonate                                                   | $\square$ phosphate                          |  |
| 175) Sulfur hexaflu                                                           | uoride is an example                       | of a                                                          |                                              |  |
| ☐ monatomic id                                                                | on                                         | ☐ binary compound                                             | d                                            |  |
| ☐ polyatomic ic                                                               | on                                         | ☐ polyatomic comp                                             | □ polyatomic compound                        |  |







| 176) Metals tend to electrons and nonmetals tend to electrons.          |
|-------------------------------------------------------------------------|
| □ gain, gain                                                            |
| □ lose, lose                                                            |
| □ lose, gain                                                            |
| □ gain, gain                                                            |
| ☐ neither, they keep their electrons                                    |
| 177) Anions tend to have a charge and cations tend to have a charge     |
| □ positive, positive                                                    |
| □ negative, negative                                                    |
| □ positive, negative                                                    |
| □ negative, positive                                                    |
| ☐ neither, they are both neutral                                        |
| 178) Anions tend to be and cations tend to be                           |
| ☐ metals, metals                                                        |
| □ nonmetals, nonmetals                                                  |
| ☐ metals, nonmetals                                                     |
| □ nonmetals, metals                                                     |
| ☐ metalloids, metalloids                                                |
| 179) When a metal and a nonmetal react, the tends to lose electrons and |
| the tends to gain electrons.                                            |
| ☐ metal, metal                                                          |
| □ nonmetal, nonmetal                                                    |
| ☐ metal, nonmetal                                                       |
| □ nonmetal, metal                                                       |
| $\hfill \square$ None of the above, these elements share electrons.     |
| 180) typically form ions with a 2+ charge                               |
| ☐ Alkaline earth metals                                                 |
| ☐ Halogens                                                              |
| ☐ Chalcogens                                                            |
| ☐ Alkali metals                                                         |
| ☐ Transition metals                                                     |





## Ionic Compounds and Metals



| 181) which spec                                     | cies below is the r        | nitride ion?                |                                           |                    |  |
|-----------------------------------------------------|----------------------------|-----------------------------|-------------------------------------------|--------------------|--|
| □ Na <sup>+</sup>                                   | □ NO <sub>3</sub> -        | $\square$ NO <sub>2</sub> - | $\square$ NH <sub>4</sub> <sup>+</sup>    | $\square$ $N^{3-}$ |  |
| 182) Sodium for                                     | ms an ion with a           | charge of                   |                                           |                    |  |
| □ 1+                                                | □ 1-                       | □ 2+                        | □ 2-                                      | □ 0                |  |
| 183) Aluminum f                                     | forms an ion with          | a charge of                 | ·                                         |                    |  |
| □ 2+                                                | □ 1-                       | □ 3+                        | □ 2-                                      | □ 0                |  |
| 184) Calcium for                                    | rms an ion with a          | charge of _                 |                                           |                    |  |
| □ 1-                                                | □ 2-                       | □ 1+                        | □ 2+                                      | □ 0                |  |
| 185) Barium form                                    | ms an ion with a c         | harge of                    |                                           |                    |  |
| □ 1+                                                | □ 2-                       | □ 3+                        | □ 3-                                      | □ 2+               |  |
| 186) Bromine fo                                     | rms an ion with a          | charge of _                 |                                           |                    |  |
| □ 2+                                                | □ 3-                       | □ 1+                        | □ 3+                                      | □ 1-               |  |
| 187) Fluorine for                                   | rms an ion with a          | charge of                   |                                           |                    |  |
| □ 1-                                                |                            | □ 2+                        | <br>3+                                    | □ 3-               |  |
| 188) lodine form                                    | ns an ion with a ch        | narge of                    |                                           |                    |  |
| □ <b>7</b> -                                        |                            | □ 2-                        | <br>□ 2+                                  | □ 1-               |  |
| 189) Oxygen for                                     | ms an ion with a           | charge of                   |                                           |                    |  |
| □ 2-                                                | □ 2+                       | □ 3-                        | □ 3+                                      | □ 6+               |  |
| 190) Sulfur form                                    | s an ion with a ch         | arge of                     |                                           |                    |  |
| □ 2+                                                | □ 2-                       | □ 3+                        | □ 6-                                      | □ 6+               |  |
| 191) How many                                       | electrons does th          | e Al3+ ion p                | ossess?                                   |                    |  |
| □ 16                                                | □ 10                       | 6                           | □ 0                                       | □ 13               |  |
| 192) Predict the charge of the most stable ion of P |                            |                             |                                           |                    |  |
| □ 2+                                                | □ 3-                       | □ 3+                        | □ 1-                                      | □ 2-               |  |
| 193) Predict the                                    | charge of the mo           | st stable ion               | of S                                      |                    |  |
| □ 3+                                                | □ 1-                       | □ 6+                        | □ 2+                                      | □ 2-               |  |
| 194) Which of th                                    | ne following comp          | ounds would                 | I you expect to be ioni                   | c?                 |  |
|                                                     | $\square$ H <sub>2</sub> O |                             | $\square$ CO <sub>2</sub> NH <sub>3</sub> | □ CaO              |  |
| MOHAMED  Ahmed Abdelbari                            | chemya.weebly.co           | om/                         |                                           | 27                 |  |



Ahmed Abdelbari

## Ionic Compounds and Metals



| 195) Which o                             | f the following cor                      | mpounds would y                          | ou expect to be i                           | onic?                                    |
|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------|
| □ H <sub>2</sub> O                       | $\square$ CO <sub>2</sub>                |                                          | $\square$ SrCl <sub>2</sub> SO <sub>2</sub> | $\square$ H <sub>2</sub> S               |
| 196) Which p                             | air of elements is                       | most likely to for                       | m an ionic bond?                            |                                          |
| ☐ barium,                                | Chlorine                                 |                                          |                                             |                                          |
| ☐ calcium                                | , sodium                                 |                                          |                                             |                                          |
| □ oxygen                                 | , fluorine                               |                                          |                                             |                                          |
| □ sulfur, o                              | carbon                                   |                                          |                                             |                                          |
| □ nitroger                               | n, hydrogen                              |                                          |                                             |                                          |
| 197) Of the c                            | hoices below, whi                        | ch one is not an i                       | ionic compound?                             |                                          |
| □ PCI <sub>5</sub>                       |                                          | □ RbCl                                   | $\square$ PbCl <sub>2</sub>                 | □ NaCl                                   |
| 198) What is                             | the formula of t                         | he compound fo                           | rmed between s                              | trontium ions and                        |
| nitrogen i                               | ons?                                     |                                          |                                             |                                          |
| □ SrN                                    | $\square$ Sr <sub>3</sub> N <sub>2</sub> | $\square$ Sr <sub>2</sub> N <sub>3</sub> | $\; \square \; SrN_2$                       | $\square$ SrN <sub>3</sub>               |
| 199) Magnes                              | ium reacts with a                        | certain element to                       | o form a compour                            | nd with the general                      |
| formula N                                | lgX. What would                          | the most likely fo                       | ormula be for the                           | compound formed                          |
| between                                  | Lithium and eleme                        | ent X?                                   |                                             |                                          |
| $\Box$ Li <sub>2</sub> X                 | $\square$ LiX <sub>2</sub>               | $\square$ Li <sub>2</sub> X <sub>3</sub> | $\square \text{ Li}_2X_2$                   | □ LiX                                    |
| 200) Aluminu                             | m reacts with a c                        | ertain nonmetallid                       | e element to form                           | a compound with                          |
| the gene                                 | ral formula AIX.                         | Element X is a                           | diatomic gas at                             | room temperature                         |
| Element 2                                | X must be                                |                                          |                                             |                                          |
| □ sulfur                                 | ☐ fluorine                               | ☐ Bromine                                | □ nitrogen                                  | □ oxygen                                 |
| 201) Predict t                           | he formula of the i                      | onic compound th                         | nat forms from Ca                           | lcium and Fluorine                       |
| □ CaF <sub>2</sub>                       | $\Box$ C <sub>2</sub> F                  | $\square$ C <sub>2</sub> F <sub>2</sub>  | $\square$ C2F <sub>3</sub>                  | □ Ca <sub>3</sub> F <sub>2</sub>         |
| 202) Predict                             | the formula of the                       | e ionic compoun                          | d that forms fron                           | n magnesium and                          |
| fluorine                                 |                                          |                                          |                                             |                                          |
| $\square$ Mg <sub>2</sub> F <sub>3</sub> | □ MgF                                    | $\square$ Mg <sub>2</sub> F              | $\square$ Mg $_3$ F $_2$                    | $\square$ MgF $_2$                       |
| 203) Predict                             | the formula of the                       | e ionic compound                         | d that forms fron                           | n magnesium and                          |
| oxygen.                                  |                                          |                                          |                                             |                                          |
| □ Mg <sub>2</sub> O                      | □ MgO                                    | $\square$ MgO <sub>2</sub>               | $\square$ Mg <sub>2</sub> O <sub>2</sub>    | $\square$ Mg <sub>3</sub> O <sub>2</sub> |
| MOHAMED Ahmed Abdelbari                  | chemya.weebl                             | v.com/                                   |                                             |                                          |







| 204) What is t | ne ionic compoi                          | und that forms from                      | m aluminum and o           | oxygen?                     |
|----------------|------------------------------------------|------------------------------------------|----------------------------|-----------------------------|
| □ AIO          | $\square$ Al <sub>3</sub> O <sub>2</sub> | $\square$ Al <sub>2</sub> O <sub>3</sub> | $\square$ AlO <sub>2</sub> | $\square$ Al <sub>2</sub> O |
| 205) The corre | ect name for Sr0                         | O is                                     |                            |                             |
| □ strontiur    | n oxide                                  |                                          |                            |                             |
| □ strontiur    | n hydroxide                              |                                          |                            |                             |
| □ strontiur    | n peroxide                               |                                          |                            |                             |
| □ strontiur    | m monoxide                               |                                          |                            |                             |
| □ strontiur    | n dioxide                                |                                          |                            |                             |
| 206) The corre | ect name for K <sub>2</sub> \$           | S is                                     |                            |                             |
| □ potassiu     | ım sulfate                               |                                          |                            |                             |
| □ potassiu     | ım disulfide                             |                                          |                            |                             |
| □ potassiu     | ım bisulfide                             |                                          |                            |                             |
| □ potassiu     | ım sulfide                               |                                          |                            |                             |
| ☐ dipotass     | sium sulfate                             |                                          |                            |                             |
| 207) The corre | ect name for Al <sub>2</sub>             | O <sub>3</sub> is                        |                            |                             |
| □ aluminu      | m oxide                                  |                                          |                            |                             |
| □ dialumin     | num oxide                                |                                          |                            |                             |
| □ dialumin     | num trioxide                             |                                          |                            |                             |
| □ aluminu      | m hydroxide                              |                                          |                            |                             |
| □ aluminu      | m trioxide                               |                                          |                            |                             |
| 208) The corre | ect name for Ca                          | H <sub>2</sub> is                        |                            |                             |
| □ hydroca      | lcium                                    |                                          |                            |                             |
| □ calcium      | dihydride                                |                                          |                            |                             |
| □ calcium      | hydroxide                                |                                          |                            |                             |
| □ calcium      | dihydroxide                              |                                          |                            |                             |
| □ calcium      | hydride                                  |                                          |                            |                             |
| 209) The corre | ect name of the                          | compound Na₃N i                          | S                          |                             |
| □ sodium       | nitride                                  |                                          |                            |                             |
| □ sodium       | azide                                    |                                          |                            |                             |
| □ sodium       | trinitride                               |                                          |                            |                             |
| □ sodium(      | III) nitride                             |                                          |                            |                             |
| □ trisodiun    | n nitride                                |                                          |                            |                             |







| 210) Element ivi                                                 | reacts with huo                             | nne to form an ic                        | nic compound wi                           | in the formula                            |  |
|------------------------------------------------------------------|---------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|--|
| MF3. The M                                                       | 1-ion has 18 elec                           | trons. Element M                         | is                                        |                                           |  |
| □P                                                               | □ Sc                                        | □ Ar                                     | □ Ca                                      | □ Cr                                      |  |
| 211) When calci                                                  | um reacts with s                            | ulfur the compoun                        | d formed is                               |                                           |  |
| $\square$ C2S <sub>2</sub>                                       | □ Ca <sub>3</sub> S <sub>2</sub>            | □ CaS                                    | □ CaS₂                                    | □ C2S <sub>3</sub>                        |  |
| 212) Aluminum I                                                  | reacts with a cert                          | tain nonmetallic el                      | lement to form a c                        | compound with                             |  |
| the general f                                                    | ormula Al <sub>2</sub> X <sub>3</sub> . Ele | ement X must be fr                       | om Group                                  | of the Periodic                           |  |
| Table of Ele                                                     | ments.                                      |                                          |                                           |                                           |  |
| □ 13                                                             | □ 14                                        | □ 15                                     | □ 16                                      | □ 17                                      |  |
| 213) The charge                                                  | e on the mangane                            | ese in the salt Mn0                      | Cl3 is                                    |                                           |  |
| □ 1+                                                             | □ 1-                                        | □ 2+                                     | □ 2-                                      | □ 3+                                      |  |
| 214) Chromium                                                    | and chlorine forn                           | n an ionic compot                        | und whose formula                         | a is CrCl <sub>3</sub> . The              |  |
| name of this                                                     | compound is                                 |                                          |                                           |                                           |  |
| □ chromium                                                       | chlorine                                    |                                          |                                           |                                           |  |
| □ chromium(                                                      | III) chloride                               |                                          |                                           |                                           |  |
| ☐ monochror                                                      | mium trichloride                            |                                          |                                           |                                           |  |
| □ chromium(                                                      | III) trichloride                            |                                          |                                           |                                           |  |
| ☐ chromic tri                                                    | chloride                                    |                                          |                                           |                                           |  |
| 215) The correct                                                 | t formula of iron(l                         | II) bromide is                           |                                           |                                           |  |
| ☐ FeBr <sub>2</sub>                                              | □ FeBr <sub>3</sub>                         | □ FeBr                                   | ☐ Fe <sub>3</sub> Br <sub>3</sub>         | □ Fe <sub>3</sub> Br                      |  |
| 216) Which one                                                   | of the following of                         | compounds is chro                        | omium(III) oxide?                         |                                           |  |
| $\Box$ Cr <sub>2</sub> O <sub>3</sub>                            | □ CrO <sub>3</sub>                          | $\square$ Cr <sub>3</sub> O <sub>2</sub> | □ Cr <sub>3</sub> O                       | $\square$ Cr <sub>2</sub> O <sub>4</sub>  |  |
| 217) Which one of the following compounds is copper(I) chloride? |                                             |                                          |                                           |                                           |  |
| □ CuCl                                                           | $\square$ CuCl <sub>2</sub>                 | □ Cu <sub>2</sub> Cl                     | $\square$ Cu <sub>2</sub> Cl <sub>3</sub> | $\square$ Cu <sub>3</sub> Cl <sub>2</sub> |  |
| 218) The correct                                                 | t name for MgF <sub>2</sub>                 | is                                       |                                           |                                           |  |
| □ manganes                                                       | e difluoride                                |                                          |                                           |                                           |  |
| □ magnesiun                                                      | n difluoride                                |                                          |                                           |                                           |  |
| □ monomagr                                                       | nesium difluoride                           |                                          |                                           |                                           |  |
| □ manganes                                                       | □ manganese bifluoride                      |                                          |                                           |                                           |  |
| □ magnesiun                                                      | n fluoride                                  |                                          |                                           |                                           |  |







| 219) vvnich meta                                                                                                                                                                    | is capable of for                                                                                                        | rming more                         | e than o                           | ne cation?                                      |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|-------------------------------------------------|--------------------|
| □ Li                                                                                                                                                                                | □ Ва                                                                                                                     | □ Sr                               |                                    | □ Al                                            | □ Sn               |
| 220) The charge                                                                                                                                                                     | on the iron ion in                                                                                                       | the salt F                         | e <sub>2</sub> O <sub>3</sub> is . |                                                 |                    |
| □ +1                                                                                                                                                                                | □ +2                                                                                                                     | □ +3                               |                                    | □ -5                                            | □ -6               |
| 221) Which meta                                                                                                                                                                     | I is not required t                                                                                                      | o have its                         | charge                             | specified in                                    | the names of ionic |
| compounds it                                                                                                                                                                        | t forms?                                                                                                                 |                                    |                                    |                                                 |                    |
| □ Mn                                                                                                                                                                                | □ Fe                                                                                                                     | □ Cu                               |                                    | □ Ca                                            | □ Pb               |
| 222) The ions Ca  ☐ CaPO <sub>4</sub> ☐ C2(PO <sub>4</sub> ) <sub>3</sub> ☐ C2PO <sub>4</sub> ☐ Ca(PO <sub>4</sub> ) <sub>2</sub> ☐ Ca <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> | <sup>2+</sup> and PO <sub>4</sub> <sup>3-</sup> form                                                                     | n a salt wit                       | h the fo                           | rmula                                           |                    |
| 223) The formula                                                                                                                                                                    | of ammonium ca                                                                                                           | arbonate is                        | <b>3</b>                           | _•                                              |                    |
| $\square$ (NH <sub>4</sub> ) <sub>2</sub> CO <sub>3</sub>                                                                                                                           | NH <sub>4</sub> CO <sub>2</sub>                                                                                          | (NH <sub>3</sub> ) <sub>2</sub> CO | )4                                 | (NH <sub>3</sub> ) <sub>2</sub> CO <sub>3</sub> | $N_2(CO_3)_3$      |
| <ul><li>□ magnesium</li><li>□ manganese</li><li>□ magnesium</li><li>□ magnesium</li></ul>                                                                                           | chlorate                                                                                                                 | ) <sub>3</sub> ) <sub>2</sub> is   |                                    |                                                 |                    |
| 225) What is the                                                                                                                                                                    | correct formula fo                                                                                                       | or ammoni                          | um sulfi                           | ide?                                            |                    |
| □ NH <sub>4</sub> SO <sub>3</sub>                                                                                                                                                   | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>                                                                          | (NH <sub>4</sub> ) <sub>2</sub> S  | NH₃S                               | $N_2S_3$                                        |                    |
| <ul> <li>□ Mn(NO<sub>2</sub>)<sub>2</sub></li> <li>□ Mg(NO<sub>3</sub>)<sub>2</sub></li> <li>□ Mn(NO<sub>3</sub>)<sub>2</sub></li> <li>□ Mg<sub>3</sub>N<sub>2</sub></li> </ul>     | ula/name pair is in<br>manganese(II) nit<br>magnesium nitrat<br>manganese(II) nit<br>magnesium nitrite<br>magnesium perm | trite<br>e<br>trate                |                                    |                                                 |                    |







| 227) The formul                                        | la for a salt is XBr                       | . The X-ion in th                       | nis salt has 46 ele | ctrons. The meta       |
|--------------------------------------------------------|--------------------------------------------|-----------------------------------------|---------------------|------------------------|
| X is                                                   |                                            |                                         |                     |                        |
| □ Ag                                                   | □ Pd                                       | □ Cd                                    | □ Cu                | □ Cs                   |
| 228) Which forn                                        | nula/name pair is                          | incorrect?                              |                     |                        |
| ☐ FeSO <sub>4</sub>                                    | iron(II) sulfate                           |                                         |                     |                        |
| $\Box$ Fe <sub>2</sub> (SO <sub>3</sub> ) <sub>3</sub> | iron(III) sulfite                          |                                         |                     |                        |
| □ FeS                                                  | iron(II) sulfide                           |                                         |                     |                        |
| ☐ FeSO <sub>3</sub>                                    | iron(II) sulfite                           |                                         |                     |                        |
| ☐ Fe <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>      | iron(III) sulfide                          |                                         |                     |                        |
| 229) The formul                                        | la for aluminum h                          | ydroxide is                             |                     |                        |
| □ AIOH                                                 | □ Al₃OH                                    | $\Box$ Al <sub>2</sub> (C               | $\Box$ AI(O         | $H)_3  \Box \ Al_2O_3$ |
| 230) The name                                          | of the ionic comp                          | ound (NH <sub>4</sub> ) <sub>3</sub> PC | 0 <sub>4</sub> is   |                        |
| □ ammoniun                                             | n phosphate                                |                                         |                     |                        |
| ☐ tetrammor                                            | nium phosphate                             |                                         |                     |                        |
| □ nitrogen h                                           | ydrogen phosphate                          | e                                       |                     |                        |
| □ ammonia                                              | phosphide                                  |                                         |                     |                        |
| □ triammoni                                            | um phosphate                               |                                         |                     |                        |
| 231) The correct                                       | t name for Cu(CN                           | N) <sub>2</sub> is                      |                     |                        |
| ☐ Copper (I)                                           | cyanide                                    |                                         |                     |                        |
| ☐ Carbon cy                                            | ranide                                     |                                         |                     |                        |
| ☐ Carbon carbonate                                     |                                            |                                         |                     |                        |
| ☐ Copper (II) cyanide                                  |                                            |                                         |                     |                        |
| □ Copper (I)                                           | nitride                                    |                                         |                     |                        |
| 232) The correct                                       | t name for N <sub>2</sub> O <sub>2</sub> i | S                                       |                     |                        |
| ☐ Sodium ox                                            | kide                                       |                                         |                     |                        |
| ☐ Sodium di                                            | oxide                                      |                                         |                     |                        |
| ☐ Disodium                                             | oxide                                      |                                         |                     |                        |
| ☐ Sodium pe                                            | eroxide                                    |                                         |                     |                        |
| ☐ Disodium                                             | dioxide                                    |                                         |                     |                        |



42







| 233) Barium r                                       | eacts with a po                                                                                          | olyatomic ion              | to form a compou      | and with the general             |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|----------------------------------|--|
| formula Ba                                          | formula Ba <sub>3</sub> (X) <sub>2</sub> . What would be the most likely formula for the compound formed |                            |                       |                                  |  |
| between s                                           | sodium and the                                                                                           | polyatomic ion             | X?                    |                                  |  |
| □ NaX                                               | □ N2X                                                                                                    | $\square$ N2X <sub>2</sub> | □ Na₃X                | □ Na <sub>3</sub> X <sub>2</sub> |  |
| 234) Chemica                                        | I bonding in me                                                                                          | tals is                    |                       |                                  |  |
| ☐ the same                                          | e as ionic bondin                                                                                        | g.                         |                       |                                  |  |
| ☐ the same                                          | e as covalent bo                                                                                         | nding.                     |                       |                                  |  |
| ☐ a combi                                           | nation of ionic an                                                                                       | d covalent bond            | ling.                 |                                  |  |
| ☐ different                                         | from ionic or cov                                                                                        | alent bonding.             |                       |                                  |  |
| 235) The vale                                       | nce electrons in                                                                                         | a metallic bor             | nd                    |                                  |  |
| □ move fre                                          | eely throughout th                                                                                       | ne network of m            | etal atoms.           |                                  |  |
| □ are held                                          | tightly by the mo                                                                                        | st positively cha          | arged atom.           |                                  |  |
| □ are shar                                          | ed equally betwe                                                                                         | en two metal at            | oms.                  |                                  |  |
| □ continuo                                          | ously move from                                                                                          | one energy leve            | l to another.         |                                  |  |
| 236) Which of                                       | the following p                                                                                          | roperties is not           | explained by meta     | allic bonding?                   |  |
| □ electrica                                         | al conductivity                                                                                          |                            | ☐ thermal condu       | ıctivity                         |  |
| □ brittlene                                         | □ brittleness □ ductility                                                                                |                            |                       |                                  |  |
| 237) Metals a                                       | re malleable be                                                                                          | cause when st              | ruck, one plane of    | metal atoms                      |  |
| □ can slide                                         | e past another pla                                                                                       | ane without brea           | aking bonds.          |                                  |  |
| □ cannot e                                          | $\ \square$ cannot easily move out of the way.                                                           |                            |                       |                                  |  |
| □ moves in                                          | $\hfill \square$ moves in a way that maximizes the repulsive forces within the metal.                    |                            |                       |                                  |  |
| $\ \square$ bonds to the plane directly beneath it. |                                                                                                          |                            |                       |                                  |  |
| 238) In genera                                      | al, as you move f                                                                                        | rom right to left          | across any row of th  | e                                |  |
| periodic tab                                        | ole, the strength o                                                                                      | of a metallic bon          | d                     |                                  |  |
| □ increase                                          | es. □ dec                                                                                                | reases.                    | stays the same        | $\square$ shows no trend.        |  |
| 239) Which of                                       | these is respor                                                                                          | sible for the g            | ood electrical cond   | luctivity of metals?             |  |
| ☐ the arrai                                         | ngement of meta                                                                                          | l atoms in separ           | ate layers            |                                  |  |
| □ the high                                          | density of metals                                                                                        | s atoms in the c           | rystal lattice        |                                  |  |
| ☐ the abilit                                        | $\hfill\Box$ the ability of electrons to move freely about the crystal structure                         |                            |                       |                                  |  |
| $\Box$ the fact                                     | that metal atoms                                                                                         | contain many c             | orbitals separated by | very small energy                |  |









| 240) The arrangement               | it of valence elec                                                     | ctions in a metallic bond is | best described as     |  |
|------------------------------------|------------------------------------------------------------------------|------------------------------|-----------------------|--|
| $\ \square$ fixed positions in     | n a lattice                                                            |                              |                       |  |
| ☐ a sea of free-mo                 | oving electrons.                                                       |                              |                       |  |
| ☐ concentrated ele                 | ectron density aro                                                     | und specific atoms.          |                       |  |
| $\square$ electron pairs ex        | kisting in multiple t                                                  | bonds.                       |                       |  |
| 241) The number of e               | electrons in the o                                                     | outer shell                  |                       |  |
| □ Isotope                          | $\square$ ion                                                          | ☐ atomic mass                | □ valence             |  |
| 242) These elements                | don't bond with                                                        | other elements because       | their outer shell is  |  |
| filled.                            |                                                                        |                              |                       |  |
| ☐ Metals                           |                                                                        |                              |                       |  |
| ☐ Inert gases                      |                                                                        |                              |                       |  |
| $\ \square$ noble solids           |                                                                        |                              |                       |  |
| ☐ none of the ans                  | wers are correct                                                       |                              |                       |  |
| 243) Most atoms ado                | pt one of three si                                                     | mple strategies to achieve   | a filled shell. Which |  |
| of the following is                | NOT one of the                                                         | se strategies?               |                       |  |
| $\square$ they keep their $\alpha$ | $\square$ they keep their own electrons $\square$ they share electrons |                              |                       |  |
| ☐ they accept elec                 | $\square$ they accept electrons $\square$ they give away electrons     |                              |                       |  |
| 244) Which of the following        | lowing is NOT a                                                        | type of chemical bond?       |                       |  |
| ☐ Metallic                         | ☐ Valence                                                              | ☐ Covalent                   | □ Ionic               |  |
| 245) In ionic bonding              |                                                                        |                              |                       |  |
| ☐ Electrons are gi                 | ven away                                                               | ☐ Two answers a              | re correct            |  |
| ☐ Electrons are ac                 | ☐ Electrons are accepted ☐ electrons are shared                        |                              |                       |  |
| 246) In ionic bonding              | electrical forces                                                      | between same charged io      | ns holds the atoms    |  |
| together.                          |                                                                        |                              |                       |  |
| ☐ True                             |                                                                        | False                        |                       |  |
| 247) In metallic bond              | ing                                                                    |                              |                       |  |
| □ One atom takes                   | the outer shell ele                                                    | ectrons from another atom.   |                       |  |
| ☐ Bonding takes                    | place between p                                                        | positively charged areas o   | f one atom with a     |  |
| negatively charg                   | ged area of anothe                                                     | er atom.                     |                       |  |
| □ A couple of ator                 | ns share their elec                                                    | ctrons with each other.      |                       |  |
| □ Some electrons                   | are shared by all                                                      | the atoms in the material.   |                       |  |









| 248) Which of the folic                                  | owing is NOT a characte     | ensuc of metals?         |                |  |
|----------------------------------------------------------|-----------------------------|--------------------------|----------------|--|
| ☐ Shiny luster                                           |                             | □ conducts electricity   |                |  |
| ☐ Brittle/Shatters easily                                |                             | ☐ Malleable              |                |  |
| 249) When two or mor                                     | re metal elements are c     | ombined they form an     |                |  |
| ☐ Alloy                                                  | □ bronze                    | ☐ covalent bond          | □ brass        |  |
| 250) In metals, the                                      | electrons form a            | shared sea of electrons  | S.             |  |
| Metallic                                                 | ☐ Inner                     | ☐ Outer                  | □ Ionic        |  |
| 251) In general, what                                    | can be said of the melti    | ng points of metals?     |                |  |
| ☐ They are low.                                          |                             | ☐ They are high.         |                |  |
| ☐ They are lower th                                      | nan nonmetals.              | ☐ They do not have me    | elting points. |  |
|                                                          |                             |                          |                |  |
| 252) I can hit a metal                                   | with a hammer without       | the metal shattering bed | cause of its   |  |
| ☐ Ductility                                              | ☐ Malleability              | ☐ Conductivity ☐ Lu      | ustrousness    |  |
| 253) Metals like to                                      | electrons.                  |                          |                |  |
| □ Gain                                                   | □ Lose                      | ☐ Annihilate             | □ Juggle       |  |
| 254) There are more r                                    | metals than nonmetals i     | n the periodic table     |                |  |
| □ True                                                   |                             | ☐ False                  |                |  |
| 255) What do metals of                                   | conduct?                    |                          |                |  |
| ☐ Heat                                                   | □ electricity               | $\square$ both           | □ neither      |  |
| 256) Why are alloys g                                    | enerally used to make e     | everyday objects?        |                |  |
| ☐ Alloys are often s                                     | stronger and less active th | nan pure metals.         |                |  |
| ☐ Alloys have higher melting point than pure metals.     |                             |                          |                |  |
| ☐ Alloys are less expensive to produce than pure metals. |                             |                          |                |  |
| □ Alloys have ionic                                      | bonds instead of metallic   | bonds.                   |                |  |
| 257) Metallic bonding                                    | is                          |                          |                |  |
| ☐ a type of covalen                                      |                             |                          |                |  |
| ☐ a type of ionic bo                                     |                             |                          |                |  |
| ☐ an attraction between positive and negative ions.      |                             |                          |                |  |
| □ an attraction between positive ions and electrons      |                             |                          |                |  |



45





| 258) What does mail         | eable mean?                |                             |                       |  |
|-----------------------------|----------------------------|-----------------------------|-----------------------|--|
| ☐ able to be shaped         |                            | $\square$ will break easily | ☐ will break easily   |  |
| $\square$ can be used for   | wire                       | $\square$ is shiny          |                       |  |
| 259) At room tempera        | ature, most metals are     | e                           |                       |  |
| Liquid                      | □ solid                    | □ gas                       | $\square$ an alloy    |  |
| 260) Why do metals          | conduct electricity?       |                             |                       |  |
| ☐ They are shiny            |                            |                             |                       |  |
| ☐ The electrons a           | re held tightly within the | lattice                     |                       |  |
| $\ \square$ The electrons a | re delocalized and able    | to move                     |                       |  |
| $\ \square$ The electrons a | re shared between two      | metal ions                  |                       |  |
| 261) Why do metals          | nave high melting poir     | nts?                        |                       |  |
| ☐ They don't                |                            |                             |                       |  |
| ☐ The negatively of         | charged electrons act a    | s a glue to hold the pos    | sitively charged ions |  |
| together.                   |                            |                             |                       |  |
| ☐ All the electrons         | become delocalized         |                             |                       |  |
| 262) A mixture of two       | or more metals is ca       | lled:                       |                       |  |
| ☐ Mixture                   | $\square$ solution         | $\square$ compound          | □ alloy               |  |
| 263) Which of the fol       | lowing is an alloy?        |                             |                       |  |
| □ sterling silver           | □ chromium                 | □ nickel                    | □ lead                |  |

